经典排序算法之归并排序详解

上一篇博客:快速排序详解

 写在前面:大家好!我是ACfun,我的昵称来自两个单词Acceptedfun。我是一个热爱ACM的蒟蒻。这篇博客来记录一下归并排序算法以及归并排序的模板。如果博客中有不足或者的错误的地方欢迎在评论区或者私信我指正,感谢大家的不吝赐教。我的唯一博客更新地址是:https://ac-fun.blog.csdn.net/。非常感谢大家的支持。一起加油,冲鸭!
用知识改变命运,用知识成就未来!加油 (ง •̀o•́)ง (ง •̀o•́)ง

归并排序简介

归并排序(Merge Sort)是建立在归并操作上的一种有效,稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;无论是顺序存储结构还是链式存储结构,都可以在O(m + n)(假设两个有序列表表的长度分别为 m 和 n)的时间量级上实现。

归并排序动画演示

归并排序思想

 假设初始序列含有 n 个记录,则可以看成 n 个有序的子序列,每个子序列的长度为 1,然后两两合并,得到 n / 2 个长度为 2 或 1 的有序子序列;再两两合并,…… ,如此重复,直到得到长度为 n 的有序序列为止,这种排序方法称为 2-路归并排序2-路归并排序中的核心操作是将一维数组中前后相邻的两个有序序列归并为一个有序序列。

归并排序的具体实现

 该算法与上一篇博客提到的快速排序都是使用的分治思想来完成的,但是方法是不同的:快速排序使用一个数来进行分治,这个数可以是第一个数、中间的数或者是最后的数等等;归并排序是用中间点(即整个序列的中间位置)来分的。具体的实现步骤如下:
1.确定分界点:mid = low + high >> 1;
2.分别将分界点两侧的序列进行递归排序
3.将排好序的两部分子序列合二为一。
图解:
归并排序

归并排序模板

void merge_sort(int q[], int l, int r){
    
    if (l >= r) return;    // 递归出口
    
    int mid = l + r >> 1;  // 确定中间点
    merge_sort(q, l, mid),merge_sort(q, mid + 1, r);  // 分别将分界点两侧的子序列进行递归排序
    
    // 将排好序的子序列进行合并
    int k = 0, i = l, j = mid + 1;
    while (i <= mid && j <= r) {
        if (q[i] <= q[j]) temp[k++] = q[i++];
        else temp[k++] = q[j++];
    }
    // 将合并完之后剩下的子序列添加到辅助空间中
    while (i <= mid) temp[k++] = q[i++];
    while (j <= r) temp[k++] = q[j++];
    // 将辅助空间temp中的数据放到原数组中
    for (i = l, j = 0; i <= r; i++, j++) q[i] = temp[j];
}

例题

原题链接:归并排序

题目描述

 给定你一个长度为n的整数数列。请你使用归并排序对这个数列按照从小到大进行排序。并将排好序的数列按顺序输出。

输入格式

 输入共两行,第一行包含整数 n。
 第二行包含 n 个整数(所有整数均在1~109范围内),表示整个数列。

输出格式

 输出共一行,包含 n 个整数,表示排好序的数列。

数据范围

1≤n≤100000

输入样例:

5
3 1 2 4 5

输出样例:

1 2 3 4 5

解题代码

#include<iostream>
using namespace std;

const int N = 1e6 + 10;
int n;
int q[N],temp[N];

void merge_sort(int q[], int l, int r){
    
    if (l >= r) return;    // 递归出口
    
    int mid = l + r >> 1;  // 确定中间点
    merge_sort(q, l, mid),merge_sort(q, mid + 1, r);  // 分别将分界点两侧的子序列进行递归排序
    
    // 将排好序的子序列进行合并
    int k = 0, i = l, j = mid + 1;
    while (i <= mid && j <= r) {
        if (q[i] <= q[j]) temp[k++] = q[i++];
        else temp[k++] = q[j++];
    }
    // 将合并完之后剩下的子序列添加到辅助空间中
    while (i <= mid) temp[k++] = q[i++];
    while (j <= r) temp[k++] = q[j++];
    // 将辅助空间temp中的数据放到原数组中
    for (i = l, j = 0; i <= r; i++, j++) q[i] = temp[j];
}

int main() {
    scanf("%d", &n);
    for (int i = 0; i < n; i++) scanf("%d",&q[i]);
    
    merge_sort(q, 0, n - 1);
    for (int i = 0; i < n; i++) printf("%d ",q[i]);
    
    return 0;
}

注意:这里需要一个辅助空间temp[]来进将归并排序后的子序列进行合并。


我是ACfun,感谢大家的支持!
赞

©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页